C3D/c3d.c
2024-03-11 20:52:34 -04:00

582 lines
20 KiB
C

#include "raylib.h"
#include "raymath.h"
#include "reader.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "arrayfuncs.h"
#include "c3dtypes.h"
#include "vecfunc.h"
const int RENDERWIDTH = 1920;
const int RENDERHEIGHT = 1080;
const int HALFWIDTH = RENDERWIDTH / 2;
const int HALFHEIGHT = RENDERHEIGHT / 2;
const int SCREENWIDTH = 1280;
const int SCREENHEIGHT = 720;
const float WIDTHSCALE = (float)RENDERWIDTH / SCREENWIDTH;
const float HEIGHTSCALE = (float)RENDERHEIGHT / SCREENHEIGHT;
const float fov = 70.0 / 180.0 * 3.14159265369;
const float half_fov = fov / 2;
float proj; // HALFWIDTH / tan(half_fov) Inited later
bool printdebug;
static inline Vector3 Tri2DBaryAtPoint(Tri2D *t, Vector2 p) {
Vector3 retvec;
Vector2 v0 = Vector2Subtract(t->b, t->a); // cachable
Vector2 v1 = Vector2Subtract(t->c, t->a); // cacheable
Vector2 v2 = Vector2Subtract(p, t->a);
float d00 = Vector2DotProduct(v0, v0); // cacheable
float d01 = Vector2DotProduct(v0, v1); // cacheable
float d11 = Vector2DotProduct(v1, v1); // cahceable
float d20 = Vector2DotProduct(v2, v0);
float d21 = Vector2DotProduct(v2, v1);
float denom = d00 * d11 - d01 * d01; // cache
retvec.x = (d11 * d20 - d01 * d21) / denom;
retvec.y = (d00 * d21 - d01 * d20) / denom;
retvec.z = 1.0 - retvec.x - retvec.y;
return retvec;
}
Vector2 BaryAndTritoPoint(Tri2D *t, Vector3 bary) {
Vector2 retvec;
retvec.x = bary.x * t->a.x + bary.y * t->b.x + bary.z * t->c.x;
retvec.y = bary.y * t->a.y + bary.y * t->b.y + bary.z * t->c.y;
return retvec;
}
static inline float DepthAtBary(Tri2D *t, Vector3 bary) {
float firstrepz = 1 / t->adepth;
float secondrepz = 1 / t->bdepth;
float thirdrepz = 1 / t->cdepth;
float finrepz = firstrepz * bary.x + secondrepz * bary.y + thirdrepz * bary.z;
return 1 / finrepz;
}
double Min(double a, double b) {
if (a > b) {
return b;
}
return a;
}
double Max(double a, double b) {
if (a < b) {
return b;
}
return a;
}
static inline int IndexOfZBuff(int row, int col) { return row + RENDERWIDTH * col; }
// sort triangle verts so that point A is the "highest" point (lowest y val) and
// point C is the "lowest" pont (highest y val)
void Tri2DSortByY(Tri2D *t) {
Vector2 temp;
if (t->a.y > t->b.y) {
temp = t->a;
t->a = t->b;
t->b = temp;
}
if (t->b.y > t->c.y) {
temp = t->b;
t->b = t->c;
t->c = temp;
}
if (t->a.y > t->b.y) {
temp = t->a;
t->a = t->b;
t->b = temp;
}
}
// Draws triangle with a flat top. Note A and B must be the top points with C
// being the bottom "spike"
void FillTopFlatZbuffer(Zee *zee, Tri2D *t, Tri2D *tp) {
if (t->b.x < t->a.x) {
Vector2 e = t->b;
t->b = t->a;
t->a = e;
}
// Becasue we are trying to get the x values in terms of the y values, we
// need inverse slope
float atocslopeinv =
(t->c.x - t->a.x) / (t->c.y - t->a.y); // dif in x from start to end with a and c
float btocslopinv =
(t->c.x - t->b.x) / (t->c.y - t->b.y); // dif in x from start to end with b and c
// start at bottom of triangle (point c) so that we do not need to determine
// which vertex is on which side and increment it with its proper slope
double curx1 = t->c.x;
double curx2 = t->c.x;
for (int scanline = t->c.y; scanline >= t->a.y; scanline--) {
if (0 <= scanline && scanline < RENDERHEIGHT) {
for (int i = Max(curx1, 0); i < Min(curx2, RENDERWIDTH); i++) {
/* zee[IndexOfZBuff(i, scanline)].triangle = tp; */
Vector3 baryatpoint = Tri2DBaryAtPoint(tp, (Vector2){i, scanline});
float depth = DepthAtBary(tp, baryatpoint);
if (depth > zee[IndexOfZBuff(i, scanline)].depth) {
zee[IndexOfZBuff(i, scanline)].triangle = tp;
zee[IndexOfZBuff(i, scanline)].depth = depth;
// printf("here\n");
}
}
}
curx1 -= atocslopeinv; // subtract because we are working backwards (reason
// why we start with point c in slope equtn)
curx2 -= btocslopinv;
}
}
void PrintTri2D(Tri2D t) {
printf("{(TRI2D) A: (%f, %f), B: (%f, %f), C:(%f,%f) }\n ", t.a.x, t.a.y, t.b.x, t.b.y, t.c.x,
t.c.y);
}
// Draws triangle with a flat bottomp. Note B and C must be the bottom points
// with A being the top "spike"
void FillBottomFlatZbuffer(Zee *zee, Tri2D *t, Tri2D *tp) {
if (t->c.x < t->b.x) {
Vector2 e = t->c;
t->c = t->b;
t->b = e;
}
// Becasue we are trying to get the x values in terms of the y values, we
// need inverse slope
float atobslopeinv =
(t->b.x - t->a.x) / (t->b.y - t->a.y); // dif in x from start to end with a and c
float atocslopeinv =
(t->c.x - t->a.x) / (t->c.y - t->a.y); // dif in x from start to end with b and c
// start at top of triangle (point c) so that we do not need to determine
// which vertex is on which side and increment it with its proper slope
double curx1 = t->a.x;
double curx2 = t->a.x;
for (int scanline = t->a.y; scanline < t->c.y;
scanline++) { // TODO: Possibly more optimization possible here, use linear correspondance
// for y, not just x to get depth
if (0 <= scanline && scanline < RENDERHEIGHT) {
Vector3 f1baryatpoint = Tri2DBaryAtPoint(tp, (Vector2){Max(curx1, 0), scanline});
float f1depth = DepthAtBary(tp, f1baryatpoint);
Vector3 f1baryatpoint2 = Tri2DBaryAtPoint(tp, (Vector2){Max(curx1, 0) + 1, scanline});
float f1depth2 = DepthAtBary(tp, f1baryatpoint2);
float dslope = f1depth2 - f1depth;
for (int i = Max(curx1, 0); i < Min(curx2, RENDERWIDTH); i++) {
/* zee[IndexOfZBuff(i, scanline)].triangle = tp; */
/* Vector3 baryatpoint = Tri2DBaryAtPoint(tp, (Vector2){i, scanline}); */
/* float depth = DepthAtBary(tp, baryatpoint); */
float aproxdepth = f1depth + (dslope * ((float)i - (float)(Max(curx1, 0))));
if (aproxdepth > zee[IndexOfZBuff(i, scanline)].depth) {
zee[IndexOfZBuff(i, scanline)].triangle = tp;
zee[IndexOfZBuff(i, scanline)].depth = aproxdepth;
// printf("here\n");
}
}
}
curx1 += atobslopeinv;
curx2 += atocslopeinv;
}
}
void DrawTriZuff(Zee *zbuf, Tri2D *t) {
Tri2DSortByY(t);
if (t->b.y == t->c.y) { // if bottom of triangle is flat
FillBottomFlatZbuffer(zbuf, t, t);
} else if (t->a.y == t->b.y) { // if top of triangle is flat
FillTopFlatZbuffer(zbuf, t, t);
} else { // funny split tri
Vector2 v4; // v4 is the vertex on the line between a and c. It is used
// to split the triangle into a top and bottom
v4.y = t->b.y;
float slope =
(float)((t->c.x) - (t->a.x)) / ((float)(t->c.y - t->a.y)); // get slope in run over rise
// becasue we need to find x
float changeiny = (float)(t->b.y - t->a.y);
float officalxpos = t->a.x + (slope * changeiny);
v4.x = officalxpos;
Tri2D bottomflattrires;
bottomflattrires.a = t->a;
bottomflattrires.b = t->b;
bottomflattrires.c = v4;
bottomflattrires.color = t->color;
Tri2D topflattrires;
topflattrires.a = t->b;
topflattrires.b = v4;
topflattrires.c = t->c;
topflattrires.color = t->color;
FillBottomFlatZbuffer(zbuf, &bottomflattrires, t);
FillTopFlatZbuffer(zbuf, &topflattrires, t);
}
}
float Sign(Vector2 *v1, Vector2 *v2, Vector2 *v3) {
return (v1->x - v3->x) * (v2->y - v3->y) - (v2->x - v3->x) * (v1->y - v3->y);
}
static inline bool IsInTri(Tri2D tri, Vector2 p) {
float d1, d2, d3;
bool has_neg, has_pos;
d1 = Sign(&p, &tri.a, &tri.b);
d2 = Sign(&p, &tri.b, &tri.c);
d3 = Sign(&p, &tri.c, &tri.a);
has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);
return !(has_neg && has_pos);
}
void CtrlLocalCam(LocalCam *cam, float time) {
cam->velocity.x = 0;
cam->velocity.y = 0;
cam->velocity.z = 0;
cam->angleVelocity.x = 0;
cam->angleVelocity.y = 0;
cam->angleVelocity.z = 0;
if (IsKeyDown(KEY_W)) {
Vector3 forceForward = (Vector3){0, 0, -500};
Vector3 rotatedforce = RotateAboutY(forceForward, cam->angles.y);
// printf("%f", cam->angles.y);
// Vector3Print(rotatedforce);
cam->velocity = Vector3Add(cam->velocity, rotatedforce);
// cam->velocity.z = cam->velocity.z + 50000*time*sin(cam->angles.y);
// cam->velocity.x = cam->velocity.x + 500*time*cos(cam->angles.y);
}
if (IsKeyDown(KEY_S)) {
Vector3 forceForward = (Vector3){0, 0, 500};
Vector3 rotatedforce = RotateAboutY(forceForward, cam->angles.y);
cam->velocity = Vector3Add(cam->velocity, rotatedforce);
// cam->velocity.z = cam->velocity.z + 50000*time*sin(cam->angles.y);
// cam->velocity.x = cam->velocity.x + 500*time*cos(cam->angles.y);
}
if (IsKeyDown(KEY_A)) {
Vector3 forceForward = (Vector3){-500, 0, 0};
Vector3 rotatedforce = RotateAboutY(forceForward, cam->angles.y);
cam->velocity = Vector3Add(cam->velocity, rotatedforce);
// cam->velocity.z = cam->velocity.z + 50000*time*sin(cam->angles.y);
// cam->velocity.x = cam->velocity.x + 500*time*cos(cam->angles.y);
}
if (IsKeyDown(KEY_D)) {
Vector3 forceForward = (Vector3){500, 0, 0};
Vector3 rotatedforce = RotateAboutY(forceForward, cam->angles.y);
cam->velocity = Vector3Add(cam->velocity, rotatedforce);
// cam->velocity.z = cam->velocity.z + 50000*time*sin(cam->angles.y);
// cam->velocity.x = cam->velocity.x + 500*time*cos(cam->angles.y);
}
if (IsKeyDown(KEY_SPACE)) {
cam->velocity.y = cam->velocity.y - 50;
}
if (IsKeyDown(KEY_LEFT_SHIFT)) {
cam->velocity.y = cam->velocity.y + 50;
}
if (IsKeyDown(KEY_Q)) {
cam->angleVelocity.y = cam->angleVelocity.y + time * 30;
}
if (IsKeyDown(KEY_E)) {
cam->angleVelocity.y = cam->angleVelocity.y - time * 30;
}
if (IsKeyDown(KEY_G)) {
printf("PosX: %f PosY: %f PosZ: %f\n", cam->position.x, cam->position.y, cam->position.z);
printf("RotX; %f RotY: %f RotZ: %f\n", cam->angles.x, cam->angles.y, cam->angles.z);
}
}
void LocalCamApplyVelo(LocalCam *cam, float time) {
cam->position.x = cam->position.x + cam->velocity.x * time;
cam->position.y = cam->position.y + cam->velocity.y * time;
cam->position.z = cam->position.z + cam->velocity.z * time;
cam->angles.x = cam->angles.x + cam->angleVelocity.x * time;
cam->angles.y = cam->angles.y + cam->angleVelocity.y * time;
cam->angles.z = cam->angles.z + cam->angleVelocity.z * time;
// printf("%f %f %f\n",cam->angles.x, cam->angles.y, cam->angles.z);
}
Vector2 Conv3Dto2D(Vector3 v) {
Vector2 returnvector;
returnvector.x = proj * v.x / (-v.z);
returnvector.y = proj * v.y / (-v.z);
return returnvector;
}
Vector2 Conv2DCenteredToScreen(Vector2 v) {
Vector2 returnvector;
returnvector.x = v.x + HALFWIDTH;
returnvector.y = v.y + HALFHEIGHT;
return returnvector;
}
static inline Vector3 TransformWithCam(Vector3 v, LocalCam *cam) {
Vector3 returnvector;
returnvector.x = v.x - cam->position.x;
returnvector.y = v.y - cam->position.y;
returnvector.z = v.z - cam->position.z;
returnvector = RotateAboutZ(returnvector, cam->angles.z);
returnvector = RotateAboutY(returnvector, -cam->angles.y);
returnvector = RotateAboutX(returnvector, -cam->angles.x);
// printf("Before: %f %f %f, After: %f %f %f\n", v.x, v.y, v.z,
// returnvector.x, returnvector.y, returnvector.z);
return returnvector;
}
Tri TriTransformWithCam(Tri *t, LocalCam *cam) {
Tri rettri;
rettri.a = TransformWithCam(t->a, cam);
rettri.b = TransformWithCam(t->b, cam);
rettri.c = TransformWithCam(t->c, cam);
rettri.color = t->color;
return rettri;
}
Tri2D ConvertTriToTri2D(Tri *t) {
Tri2D rettri2d;
rettri2d.a = Conv3Dto2D(t->a);
rettri2d.b = Conv3Dto2D(t->b);
rettri2d.c = Conv3Dto2D(t->c);
rettri2d.a = Conv2DCenteredToScreen(rettri2d.a);
rettri2d.b = Conv2DCenteredToScreen(rettri2d.b);
rettri2d.c = Conv2DCenteredToScreen(rettri2d.c);
rettri2d.adepth = t->a.z;
rettri2d.bdepth = t->b.z;
rettri2d.cdepth = t->c.z;
rettri2d.color = t->color;
return rettri2d;
}
int main() {
printf("%d\n", TestFunc(5));
proj = HALFWIDTH / tan(half_fov);
SetConfigFlags(FLAG_WINDOW_UNDECORATED);
InitWindow(SCREENWIDTH, SCREENHEIGHT, "raylib [core] example - basic window");
// SetWindowPosition(0,1080);
Vector2 a = GetMonitorPosition(0);
int mh = GetMonitorHeight(0);
int mw = GetMonitorWidth(0);
int w = SCREENWIDTH;
int h = SCREENHEIGHT;
printf("mh:%d mw:%d w:%d h:%d\n", mh, mw, w, h);
SetWindowPosition(a.x + (0.5 * mw) - (w / 2), a.y + (0.5 * mh) - (0.5 * h));
RenderTexture2D uiraylibtexture = LoadRenderTexture(RENDERWIDTH, RENDERHEIGHT);
RenderTexture2D render3dtexture = LoadRenderTexture(RENDERWIDTH, RENDERHEIGHT);
Texture2D directaccesstex;
// Init cube model
// TODO: Load from obj
LocalCam camera;
camera.position = (Vector3){0, 0, 0};
camera.acceleration = (Vector3){0, 0, 0};
camera.angleAcceleration = (Vector3){0, 0, 0};
camera.angles = (Vector3){0, 0, 0};
camera.velocity = (Vector3){0, 0, 0};
camera.angleVelocity = (Vector3){0, 0, 0};
Vector3 point = (Vector3){0, 0, -10};
Tri internaltriarray[50];
TriArray tarr;
tarr.arr = internaltriarray;
tarr.length = 0;
TriArrayAppend(&tarr, (Tri){(Vector3){0, 0, -1000}, (Vector3){0, 800, -1000},
(Vector3){800, 800, -1000}, WHITE});
TriArrayAppend(&tarr, (Tri){(Vector3){0, 0, -2000}, (Vector3){0, 800, -2000},
(Vector3){800, 800, -2000}, BLUE});
Tri internaltransformedtriarray[50];
TriArray TransformedTris;
TransformedTris.arr = internaltransformedtriarray;
TransformedTris.length = 0;
Tri2D internaltri2darray[50];
Tri2DArray Tri2Darr;
Tri2Darr.length = 0;
Tri2Darr.arr = internaltri2darray;
// static Zee ZBuff[1920][1080] = {{(Zee){10000,NULL}}}; //FIXME: Stupid
// static makes the file 32 Megs because pog
Zee *ZBuff = malloc(RENDERHEIGHT * RENDERWIDTH * sizeof(Zee));
static Color display[1920 * 1080 * 4];
memset(display, 0, sizeof(display));
Tri2D funners =
(Tri2D){(Vector2){50, 50}, (Vector2){500, 50}, (Vector2){500, 500}, 0, 0, 0, GREEN};
Tri2D funners2 =
(Tri2D){(Vector2){600, 0}, (Vector2){600, 500}, (Vector2){1000, 500}, 0, 0, 0, RED};
Tri2D fullscreentritop =
(Tri2D){(Vector2){0, 0}, (Vector2){1920, 0}, (Vector2){1920, 1080}, 0, 0, 0, BLUE};
Tri2D fullscreentribottom =
(Tri2D){(Vector2){0, 0}, (Vector2){0, 1080}, (Vector2){1920, 1080}, 0, 0, 0, RED};
Tri2D blank = (Tri2D){(Vector2){-10, -10}, (Vector2){-10, -10}, (Vector2){-10, -10}};
Tri2D norm = (Tri2D){(Vector2){500, 50}, (Vector2){0, 0}, (Vector2){250, 500}, 0, 0, 0, GREEN};
bool run3d = true;
while (!WindowShouldClose() && run3d) {
float frametime = GetFrameTime();
CtrlLocalCam(&camera, frametime);
LocalCamApplyVelo(&camera, frametime);
// ClearBackground(BLACK);
/* Vector3 TransVector = TransformWithCam(point,&camera); */
/* if (TransVector.z < 0) { */
/* Vector2 MPos = Conv3Dto2D(TransVector); */
/* Vector2 FinPos = Conv2DCenteredToScreen(MPos); */
/* DrawCircleV(FinPos,100,BLACK); */
/* } */
/* EndTextureMode(); */
TransformedTris.length = 0;
Tri2Darr.length = 0;
for (int i = 0; i < tarr.length; i++) {
TriArrayAppend(&TransformedTris, TriTransformWithCam(&tarr.arr[i], &camera));
}
for (int i = 0; i < TransformedTris.length; i++) {
if ((TransformedTris.arr[i].a.z < 0) && (TransformedTris.arr[i].b.z < 0) &&
(TransformedTris.arr[i].c.z < 0)) {
Tri2DArrayAppend(&Tri2Darr, ConvertTriToTri2D(&TransformedTris.arr[i]));
}
}
/* for (int i = 0; i < RENDERHEIGHT*RENDERWIDTH; i ++) { */
/* ZBuff[i] = (Zee){10000,NULL}; */
/* } */
memset(display, 0, sizeof(display));
memset(ZBuff, 0, sizeof(Zee) * 1920 * 1080);
for (int i = 0; i < RENDERHEIGHT * RENDERWIDTH; i++) {
ZBuff[i].depth = -10000000;
}
/* for (int y = 0; y < RENDERHEIGHT; y++){ */
/* for (int x = 0; x<RENDERWIDTH; x++){ */
/* ZBuff[x][y].triangle = &blank; */
/* } */
/* } */
/* for (int i = 0; i < Tri2Darr.length; i++) { */
/* for (int y = 0; y < RENDERHEIGHT; y++) { */
/* for (int x = 0; x < RENDERWIDTH; x++) { */
/* if (IsInTri(Tri2Darr.arr[i], (Vector2){x, y})) { */
/* ZBuff[IndexOfZBuff(x, y)].triangle = &Tri2Darr.arr[i]; */
/* } */
/* } */
/* } */
/* } */
for (int i = 0; i < Tri2Darr.length; i++) {
DrawTriZuff(ZBuff, &Tri2Darr.arr[i]);
}
// FillTopFlatZbuffer(ZBuff, &funners);
// FillBottomFlatZbuffer(ZBuff,&funners2);
// FillTopFlatZbuffer(ZBuff, &fullscreentritop);
// FillBottomFlatZbuffer(ZBuff, &fullscreentribottom);
// DrawTriZuff(ZBuff, &norm);
// DrawTriZuff(ZBuff, TriTransformWithCam(&norm, &camera));
int index = 0;
for (int y = 0; y < RENDERHEIGHT; y++) {
for (int x = 0; x < RENDERWIDTH; x++) {
// int index = (x+y*RENDERWIDTH);
/* Color * c = &ZBuff[x][y].triangle->color;
display[index] = c->r;
display[index+1] = c->g;
display[index+2] = c->b;
display[index+3] = c->a;
*/
if (ZBuff[IndexOfZBuff(x, y)].triangle != 0) { // memset sets this to 0
// DrawPixel(x,y,ZBuff[x][y].triangle->color);
display[index] = ZBuff[IndexOfZBuff(x, y)].triangle->color;
// Zee test = ZBuff[IndexOfZBuff(x,y)];
// display[index] = test.triangle->color;
}
index = index + 1;
}
}
BeginTextureMode(uiraylibtexture);
// gui stuff
EndTextureMode();
// Copytexture to main display :0
BeginDrawing();
ClearBackground(BLACK);
UpdateTexture(render3dtexture.texture, display);
// Copies render3dtexture to screen
DrawTexturePro(
render3dtexture.texture,
(Rectangle){0, 0, render3dtexture.texture.width, render3dtexture.texture.height},
(Rectangle){0, 0, SCREENWIDTH, SCREENHEIGHT}, (Vector2){0, 0}, 0, WHITE);
// Copies uiraylibtexture to screen (not this is not the texture used
// for 3d stuff
DrawTexturePro(
uiraylibtexture.texture,
(Rectangle){0, 0, uiraylibtexture.texture.width, -uiraylibtexture.texture.height},
(Rectangle){0, 0, SCREENWIDTH, SCREENHEIGHT}, (Vector2){0, 0}, 0, WHITE);
char fpstext[40];
sprintf(fpstext, "%d", GetFPS());
DrawText(fpstext, 0, 0, 20, WHITE);
EndDrawing();
}
CloseWindow();
return 0;
}