first
This commit is contained in:
commit
91aa6afe1e
33
Makefile
Normal file
33
Makefile
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
CC = i686-elf-gcc
|
||||||
|
ASMBLR = i686-elf-as
|
||||||
|
|
||||||
|
CFLAGS = -std=gnu99 -ffreestanding
|
||||||
|
|
||||||
|
|
||||||
|
LDFLAGS = -ffreestanding -nostdlib
|
||||||
|
LDLIBS = -lgcc
|
||||||
|
LDFILE = -T linker.ld
|
||||||
|
|
||||||
|
c_objects = kernel.o
|
||||||
|
asm_objects = boot.o
|
||||||
|
|
||||||
|
ISODIR = isodir
|
||||||
|
|
||||||
|
myos.iso: myos.bin grub.cfg
|
||||||
|
mkdir -p isodir/boot/grub
|
||||||
|
cp myos.bin isodir/boot/myos.bin
|
||||||
|
cp grub.cfg isodir/boot/grub/grub.cfg
|
||||||
|
grub-mkrescue -o myos.iso isodir
|
||||||
|
|
||||||
|
|
||||||
|
myos.bin: $(c_objects) $(asm_objects)
|
||||||
|
$(CC) $(LDFILE) -o $@ $(LDFLAGS) $(c_objects) $(asm_objects) $(LDLIBS)
|
||||||
|
|
||||||
|
$(c_objects): %.o: %.c
|
||||||
|
|
||||||
|
$(asm_objects): %.o: %.s
|
||||||
|
$(ASMBLR) $< -o $@
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -f *.o myos.bin
|
||||||
|
rm -rf isodir
|
109
boot.s
Normal file
109
boot.s
Normal file
|
@ -0,0 +1,109 @@
|
||||||
|
/* Declare constants for the multiboot header. */
|
||||||
|
.set ALIGN, 1<<0 /* align loaded modules on page boundaries */
|
||||||
|
.set MEMINFO, 1<<1 /* provide memory map */
|
||||||
|
.set FLAGS, ALIGN | MEMINFO /* this is the Multiboot 'flag' field */
|
||||||
|
.set MAGIC, 0x1BADB002 /* 'magic number' lets bootloader find the header */
|
||||||
|
.set CHECKSUM, -(MAGIC + FLAGS) /* checksum of above, to prove we are multiboot */
|
||||||
|
|
||||||
|
/*
|
||||||
|
Declare a multiboot header that marks the program as a kernel. These are magic
|
||||||
|
values that are documented in the multiboot standard. The bootloader will
|
||||||
|
search for this signature in the first 8 KiB of the kernel file, aligned at a
|
||||||
|
32-bit boundary. The signature is in its own section so the header can be
|
||||||
|
forced to be within the first 8 KiB of the kernel file.
|
||||||
|
*/
|
||||||
|
.section .multiboot
|
||||||
|
.align 4
|
||||||
|
.long MAGIC
|
||||||
|
.long FLAGS
|
||||||
|
.long CHECKSUM
|
||||||
|
|
||||||
|
/*
|
||||||
|
The multiboot standard does not define the value of the stack pointer register
|
||||||
|
(esp) and it is up to the kernel to provide a stack. This allocates room for a
|
||||||
|
small stack by creating a symbol at the bottom of it, then allocating 16384
|
||||||
|
bytes for it, and finally creating a symbol at the top. The stack grows
|
||||||
|
downwards on x86. The stack is in its own section so it can be marked nobits,
|
||||||
|
which means the kernel file is smaller because it does not contain an
|
||||||
|
uninitialized stack. The stack on x86 must be 16-byte aligned according to the
|
||||||
|
System V ABI standard and de-facto extensions. The compiler will assume the
|
||||||
|
stack is properly aligned and failure to align the stack will result in
|
||||||
|
undefined behavior.
|
||||||
|
*/
|
||||||
|
.section .bss
|
||||||
|
.align 16
|
||||||
|
stack_bottom:
|
||||||
|
.skip 16384 # 16 KiB
|
||||||
|
stack_top:
|
||||||
|
|
||||||
|
/*
|
||||||
|
The linker script specifies _start as the entry point to the kernel and the
|
||||||
|
bootloader will jump to this position once the kernel has been loaded. It
|
||||||
|
doesn't make sense to return from this function as the bootloader is gone.
|
||||||
|
*/
|
||||||
|
.section .text
|
||||||
|
.global _start
|
||||||
|
.type _start, @function
|
||||||
|
_start:
|
||||||
|
/*
|
||||||
|
The bootloader has loaded us into 32-bit protected mode on a x86
|
||||||
|
machine. Interrupts are disabled. Paging is disabled. The processor
|
||||||
|
state is as defined in the multiboot standard. The kernel has full
|
||||||
|
control of the CPU. The kernel can only make use of hardware features
|
||||||
|
and any code it provides as part of itself. There's no printf
|
||||||
|
function, unless the kernel provides its own <stdio.h> header and a
|
||||||
|
printf implementation. There are no security restrictions, no
|
||||||
|
safeguards, no debugging mechanisms, only what the kernel provides
|
||||||
|
itself. It has absolute and complete power over the
|
||||||
|
machine.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
To set up a stack, we set the esp register to point to the top of the
|
||||||
|
stack (as it grows downwards on x86 systems). This is necessarily done
|
||||||
|
in assembly as languages such as C cannot function without a stack.
|
||||||
|
*/
|
||||||
|
mov $stack_top, %esp
|
||||||
|
|
||||||
|
/*
|
||||||
|
This is a good place to initialize crucial processor state before the
|
||||||
|
high-level kernel is entered. It's best to minimize the early
|
||||||
|
environment where crucial features are offline. Note that the
|
||||||
|
processor is not fully initialized yet: Features such as floating
|
||||||
|
point instructions and instruction set extensions are not initialized
|
||||||
|
yet. The GDT should be loaded here. Paging should be enabled here.
|
||||||
|
C++ features such as global constructors and exceptions will require
|
||||||
|
runtime support to work as well.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
Enter the high-level kernel. The ABI requires the stack is 16-byte
|
||||||
|
aligned at the time of the call instruction (which afterwards pushes
|
||||||
|
the return pointer of size 4 bytes). The stack was originally 16-byte
|
||||||
|
aligned above and we've pushed a multiple of 16 bytes to the
|
||||||
|
stack since (pushed 0 bytes so far), so the alignment has thus been
|
||||||
|
preserved and the call is well defined.
|
||||||
|
*/
|
||||||
|
call kernel_main
|
||||||
|
|
||||||
|
/*
|
||||||
|
If the system has nothing more to do, put the computer into an
|
||||||
|
infinite loop. To do that:
|
||||||
|
1) Disable interrupts with cli (clear interrupt enable in eflags).
|
||||||
|
They are already disabled by the bootloader, so this is not needed.
|
||||||
|
Mind that you might later enable interrupts and return from
|
||||||
|
kernel_main (which is sort of nonsensical to do).
|
||||||
|
2) Wait for the next interrupt to arrive with hlt (halt instruction).
|
||||||
|
Since they are disabled, this will lock up the computer.
|
||||||
|
3) Jump to the hlt instruction if it ever wakes up due to a
|
||||||
|
non-maskable interrupt occurring or due to system management mode.
|
||||||
|
*/
|
||||||
|
cli
|
||||||
|
1: hlt
|
||||||
|
jmp 1b
|
||||||
|
|
||||||
|
/*
|
||||||
|
Set the size of the _start symbol to the current location '.' minus its start.
|
||||||
|
This is useful when debugging or when you implement call tracing.
|
||||||
|
*/
|
||||||
|
.size _start, . - _start
|
155
kernel.c
Normal file
155
kernel.c
Normal file
|
@ -0,0 +1,155 @@
|
||||||
|
#include <stdbool.h>
|
||||||
|
#include <stddef.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
|
/* Check if the compiler thinks you are targeting the wrong operating system. */
|
||||||
|
#if defined(__linux__)
|
||||||
|
#error "You are not using a cross-compiler, you will most certainly run into trouble"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* This tutorial will only work for the 32-bit ix86 targets. */
|
||||||
|
#if !defined(__i386__)
|
||||||
|
#error "This tutorial needs to be compiled with a ix86-elf compiler"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Hardware text mode color constants. */
|
||||||
|
enum vga_color {
|
||||||
|
VGA_COLOR_BLACK = 0,
|
||||||
|
VGA_COLOR_BLUE = 1,
|
||||||
|
VGA_COLOR_GREEN = 2,
|
||||||
|
VGA_COLOR_CYAN = 3,
|
||||||
|
VGA_COLOR_RED = 4,
|
||||||
|
VGA_COLOR_MAGENTA = 5,
|
||||||
|
VGA_COLOR_BROWN = 6,
|
||||||
|
VGA_COLOR_LIGHT_GREY = 7,
|
||||||
|
VGA_COLOR_DARK_GREY = 8,
|
||||||
|
VGA_COLOR_LIGHT_BLUE = 9,
|
||||||
|
VGA_COLOR_LIGHT_GREEN = 10,
|
||||||
|
VGA_COLOR_LIGHT_CYAN = 11,
|
||||||
|
VGA_COLOR_LIGHT_RED = 12,
|
||||||
|
VGA_COLOR_LIGHT_MAGENTA = 13,
|
||||||
|
VGA_COLOR_LIGHT_BROWN = 14,
|
||||||
|
VGA_COLOR_WHITE = 15,
|
||||||
|
};
|
||||||
|
|
||||||
|
static inline uint8_t vga_entry_color(enum vga_color fg, enum vga_color bg) {
|
||||||
|
return fg | bg << 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline uint16_t vga_entry(unsigned char uc, uint8_t color) {
|
||||||
|
return (uint16_t) uc | (uint16_t) color << 8;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t strlen(const char* str) {
|
||||||
|
size_t len = 0;
|
||||||
|
while (str[len])
|
||||||
|
len++;
|
||||||
|
return len;
|
||||||
|
}
|
||||||
|
|
||||||
|
static const size_t VGA_WIDTH = 80;
|
||||||
|
static const size_t VGA_HEIGHT = 25;
|
||||||
|
|
||||||
|
size_t terminal_row;
|
||||||
|
size_t terminal_column;
|
||||||
|
uint8_t terminal_color;
|
||||||
|
uint16_t* terminal_buffer;
|
||||||
|
|
||||||
|
void terminal_initialize(void) {
|
||||||
|
terminal_row = 0;
|
||||||
|
terminal_column = 0;
|
||||||
|
terminal_color = vga_entry_color(VGA_COLOR_LIGHT_GREY, VGA_COLOR_BLACK);
|
||||||
|
terminal_buffer = (uint16_t*) 0xB8000;
|
||||||
|
for (size_t y = 0; y < VGA_HEIGHT; y++) {
|
||||||
|
for (size_t x = 0; x < VGA_WIDTH; x++) {
|
||||||
|
const size_t index = y * VGA_WIDTH + x;
|
||||||
|
terminal_buffer[index] = vga_entry(' ', terminal_color);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void terminal_shiftup(void) {
|
||||||
|
for(size_t y = 0; y < VGA_HEIGHT-1; y++) {
|
||||||
|
for (size_t x = 0; x < VGA_WIDTH; x++) {
|
||||||
|
size_t index_current = y * VGA_WIDTH + x;
|
||||||
|
size_t index_next = (y+1) * VGA_WIDTH + x;
|
||||||
|
terminal_buffer[index_current] = terminal_buffer[index_next];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void terminal_setcolor(uint8_t color) {
|
||||||
|
terminal_color = color;
|
||||||
|
}
|
||||||
|
|
||||||
|
void terminal_putentryat(char c, uint8_t color, size_t x, size_t y) {
|
||||||
|
const size_t index = y * VGA_WIDTH + x;
|
||||||
|
terminal_buffer[index] = vga_entry(c, color);
|
||||||
|
}
|
||||||
|
|
||||||
|
void terminal_putchar(char c) {
|
||||||
|
if (c == '\n'){
|
||||||
|
terminal_row = terminal_row + 1;
|
||||||
|
terminal_column = 0;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
terminal_putentryat(c, terminal_color, terminal_column, terminal_row);
|
||||||
|
terminal_column = terminal_column + 1;
|
||||||
|
if (terminal_column >= VGA_WIDTH) {
|
||||||
|
terminal_column = 0;
|
||||||
|
terminal_row = terminal_row + 1;
|
||||||
|
}
|
||||||
|
if (terminal_row >= VGA_HEIGHT) {
|
||||||
|
terminal_shiftup();
|
||||||
|
//terminal_row = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void terminal_write(const char* data, size_t size) {
|
||||||
|
for (size_t i = 0; i < size; i++)
|
||||||
|
terminal_putchar(data[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
void terminal_writestring(const char* data) {
|
||||||
|
terminal_write(data, strlen(data));
|
||||||
|
}
|
||||||
|
|
||||||
|
void int_to_string(char * str, size_t strlen, int conv) {
|
||||||
|
char buffer[100];
|
||||||
|
for (int i = 0; i < 100; i++) {
|
||||||
|
buffer[i] = -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t startpos = 0;
|
||||||
|
while (conv != 0) {
|
||||||
|
buffer[startpos] = (conv % 10) + 48;
|
||||||
|
conv = conv / 10;
|
||||||
|
startpos = startpos + 1;
|
||||||
|
}
|
||||||
|
size_t maxindex = startpos - 1;
|
||||||
|
|
||||||
|
int j = 0;
|
||||||
|
for (int i = maxindex; i >= 0; i--) {
|
||||||
|
if (i >= strlen) {
|
||||||
|
|
||||||
|
} else {
|
||||||
|
str[i] = buffer[j];
|
||||||
|
j = j + 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void kernel_main(void) {
|
||||||
|
/* Initialize terminal interface */
|
||||||
|
terminal_initialize();
|
||||||
|
|
||||||
|
/* Newline support is left as an exercise. */
|
||||||
|
|
||||||
|
char x[50];
|
||||||
|
int_to_string(x, 50, 12345);
|
||||||
|
terminal_writestring(x);
|
||||||
|
terminal_writestring("Hello, kernel World!\n");
|
||||||
|
terminal_writestring("Hello, kernel World!\n");
|
||||||
|
terminal_writestring("Hello, kernel World!\n");
|
||||||
|
}
|
52
linker.ld
Normal file
52
linker.ld
Normal file
|
@ -0,0 +1,52 @@
|
||||||
|
/* The bootloader will look at this image and start execution at the symbol
|
||||||
|
designated as the entry point. */
|
||||||
|
ENTRY(_start)
|
||||||
|
|
||||||
|
/* Tell where the various sections of the object files will be put in the final
|
||||||
|
kernel image. */
|
||||||
|
SECTIONS
|
||||||
|
{
|
||||||
|
/* It used to be universally recommended to use 1M as a start offset,
|
||||||
|
as it was effectively guaranteed to be available under BIOS systems.
|
||||||
|
However, UEFI has made things more complicated, and experimental data
|
||||||
|
strongly suggests that 2M is a safer place to load. In 2016, a new
|
||||||
|
feature was introduced to the multiboot2 spec to inform bootloaders
|
||||||
|
that a kernel can be loaded anywhere within a range of addresses and
|
||||||
|
will be able to relocate itself to run from such a loader-selected
|
||||||
|
address, in order to give the loader freedom in selecting a span of
|
||||||
|
memory which is verified to be available by the firmware, in order to
|
||||||
|
work around this issue. This does not use that feature, so 2M was
|
||||||
|
chosen as a safer option than the traditional 1M. */
|
||||||
|
. = 2M;
|
||||||
|
|
||||||
|
/* First put the multiboot header, as it is required to be put very early
|
||||||
|
in the image or the bootloader won't recognize the file format.
|
||||||
|
Next we'll put the .text section. */
|
||||||
|
.text BLOCK(4K) : ALIGN(4K)
|
||||||
|
{
|
||||||
|
*(.multiboot)
|
||||||
|
*(.text)
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Read-only data. */
|
||||||
|
.rodata BLOCK(4K) : ALIGN(4K)
|
||||||
|
{
|
||||||
|
*(.rodata)
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Read-write data (initialized) */
|
||||||
|
.data BLOCK(4K) : ALIGN(4K)
|
||||||
|
{
|
||||||
|
*(.data)
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Read-write data (uninitialized) and stack */
|
||||||
|
.bss BLOCK(4K) : ALIGN(4K)
|
||||||
|
{
|
||||||
|
*(COMMON)
|
||||||
|
*(.bss)
|
||||||
|
}
|
||||||
|
|
||||||
|
/* The compiler may produce other sections, by default it will put them in
|
||||||
|
a segment with the same name. Simply add stuff here as needed. */
|
||||||
|
}
|
Loading…
Reference in a new issue